If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-17=0
a = 1; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·1·(-17)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*1}=\frac{0-2\sqrt{17}}{2} =-\frac{2\sqrt{17}}{2} =-\sqrt{17} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*1}=\frac{0+2\sqrt{17}}{2} =\frac{2\sqrt{17}}{2} =\sqrt{17} $
| 2x-3x÷2=4 | | (-1/3)+x=(-5/24) | | 5x-29=-7x-20 | | -4(y-1/7)=-5y= | | -1/3+x=-5/24 | | 4.25+3s=20.81 | | 3x*9=2.5x+14 | | 5w+14=109 | | D=7.4m | | 7x+7=-63 | | m+(10)=33 | | 10a^2=270 | | -0.45-0.01x=-0.48 | | -0.45-0.01x=-0.54 | | 1x+5=3x+0 | | 2r^2-4=46 | | 1x+5=0x+3 | | 10x^2=-600 | | 2x2−3x−40=3x2+7x+10 | | 12.75+2x=40.75 | | Xc7/9=140 | | 12.75+2x=28.75 | | -16t^2+96t+112=100 | | y=30,000*1.05^51 | | 11x+3=N | | 7d-5=4d+2 | | 3D-22=2d-2-d | | 16f-7=95 | | 12=2/3)y | | 3d-22=2d-2- | | 12=2/3y | | x+(x*15/100)=100 |